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The thermal breakdown of solid dielectrics includes, in a simplified form, three stages:
1) heating of the solid phase up to the temperature of the effective phase transition Tg; 2)
isothermal transition into a conducting gaseous phase; and 3) flow of the latter phase. As-
suming the electric potential ¢ of the conducting phase is constant, we can assume that the
energy inflow owing to Joule dissipation occurs only in the first two stages. Assuming that
the breakdown times are short, transport processes can be neglected. For simplicity we
neglect free charges. We write Ohm's law in its simplest form:

j = oE, (1)

where j is the electric current density; E is the intensity of the electric field; and, ¢

is the conductivity. Confining our attention to the one-dimensional case, we shall take into
account the spatial asymmetry of breakdown on the basis of a spherical description. The
foregoing simplifications of the problem were adopted in order to simplify the analysis.

The chief simplification is neglecting the transport processes. It is in this sense that

the present description is asymptotic. The remaining simplifications are not fundamental and
can be removed if necessary. At the end of this paper, in particular, a possible method for
taking into account the displacement current is briefly discussed.

Thus the problem reduces to a system consisting of the energy equations and the particu-
lar Mazwell's equations, describing the first two stages:
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Here y is the density; u is the internal energy; D = ¢E is the electric induction (e is the
dielectric constant); t is the time; and r is the radius (R, <{r<CR,). When the total cur-
rent I(t) is given, Eq. (3) is employed; when the external voltage U(t) is given, (4) is
employed. At the boundaries of the phases either j [according to (3)] or D [according to
(4)] is continuous. 1In addition, as usual, it is assumed that T and ¢ are continuous.

We shall first study the simplest situation when J(f) is given. The general solution
of (2), according to the integral of (3)

2nrdj = I(t), (5)

has the form
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where the arbitrary function f(r) = 0, according to the initial condition T(r, 0) = T,. At
the first stage u = ¢(T ~ T,) (c is the heat capacity), and assuming for simplicity that v,
c = const, we obtain
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so that the moment t, at which T(R,, t) reaches the value Ty is determined from (7) with
Ty
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At times t > t, a front corresponding to the start of the phase transition, whose coor-
dinate p,(t) is determined from (7) with r = p,,
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el o(T)dl =L _\ep@)yar L (8)
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will pass into the dielectric. For R;<{r<{p,; a phase transition occurs, and the degrée of
completion of the transition &(r; £) (0 << E<C 1) is obtained from the equation
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[X is the heat of the phase transition (u = c¢(Ty — T,) + AE)]. The time t, of completion of
the phase transition (£ = 1) at r = R; is determined from (9):
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For t > t, the front corresponding to the end of the phase transition, whose coordinate
p,(t) is determined from (9) with r = p,
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will pass into the dielectric. Inside the region of the phase transition (p, <r<p,) we find
E(r, t) as before from (9). The time t, at which the start of the phase transition reaches

. Te £y
the outer surface of the dielectric is determined from (7) with r = Rz:ycj a(T")dr’ =(21)2J, x
T
T, 5

Iz () dt’-}—:-i. Finally, the time t; at which the end of the phase transition reaches the outer
2

surface of the dielectric — the total breakdown time — is obtained from (9) with r = R,:
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4 C‘S‘U(T)dT + 0 (T2 = Gnp ng(t)dtﬁ;. It is easy to see that the inequality t, < t, , < t;
T, 0 2
holds. T
The relation between t, and t, is determined by the quantities 5‘0(T’)dT'/[G(T*)M and R,/R;.
TO
Figure 1 shows for convenience the r—t diagram with the curves p,{t) and p,(t) for I =
T#
const, when £, — ty < t3 — t,, and j‘a(T’) dT' /(o M)<<1 , when t, < t; — t,. The numbers 1-3
TO

refer to the conducting phase, the region of the phase transition, and the dielectric.

We return now to the situation when U(t) is given. For simplicity we assume that € =
const. The integrals (4) have the form

E = g, (t)er®, o = g, ()er + g,(t) (11)
(g.,, are arbitrary functions). At the stage 1
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Fig. 1

Here the arbitrary function f(r) = 0 because of the initial condition. The moment t, at
which T(R,, t) reaches the value Ty is determined from (13) with r = R;:
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For t > t, the coordinate corresponding to the start of the phase transition p,(t) is
found from (13) with r = p;:
Ty
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For R, <r< p, a phase transition occurs; the degree of completion £(r, t) is obtained from
the equation
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The moment t,; at which the phase transition stops (§ = 1) is determined from (15) with r =
Tx
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For t > t, a front corresponding to the end of the phase transition, whose coordinate
p,(t) is found as follows, passes into the dielectric. We write the integrals (4) in the

form
LV ED o=y BR e ho e

(hi,2 are arbitrary functions). Because the potential of the conducting phase is constant
U(t) is applied to the gap p,(t) — R,, i.e.,

_Aft 1y (17)
_s(pz Rz) at*
The integral (2) in the stage 1 is
T
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where the arbitrary function f(r) is calculated from the condition that (18) be identical to
(13) at t = t,, so that
t.
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From (17) and (19) with r = p; we obtain
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The integral (2) at the stage 2
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where the arbitrary function f(r) is determined from the conditicn that (21) be identical to

(15) at t = t;, so that
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From (17) and (22) with r = p, we find
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From the system (20) and (23) we obtain the final integrals
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[(ps(t) = Ry, z = p/R, << 1, and x; = R,/R, < 1]. The time t, of breakdown of the dielectric is
determined from (25) with p, = R, (x = 1):
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Finally, we have the convenient expression
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which in the limit x » 1 transforms into the obvious result for the two-dimensional case,
when the phase transition passes uniformly through the entire volume of the dielectric.
Because of the inequality 3/(1 + 2z;)> 1 it follows from (26) that the spatial asymmetry of
the breakdown shortens its duration.

Taking into account free charges leads to the appearance of a displacement current,
which is physically equivalent to relaxation of the electric field strength to its equilib-
rium value. TFor a solid dielectric, because of the redistribution of the internal energy,
the general equation for the energy neglecting transport processes in the one-dimensional
spherical case has the form (analogous to [1])
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or

Doy sy 08B 9 [ (a5 B
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which reduces to (2) with € = const. The equation of continuity of the total current [1] is

19[af,, 1D

sl ma)]=o @
whose first integral is

, 1 4D
2ﬂr2(,4.zﬁzﬁ) 1. (30)
The system (28) and (30) is closed by Ohm's law (1) and the condition of potentiality

E = —0¢/dr. Integration of this system is complicated by the fact that ¢ and ¢ depend on T

(for a solid it may be assumed that y = const). Equation (27) differs from the analogous
relation in [1] by a redefinition of the internal energy and Poynting's vector.
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MEASUREMENT OF THE TOTAL SCATTERING CROSS SECTIONS OF INERT GASES
IN THE RELATIVE ENERGY RANGE 7-17 eV

M. G. Abramovskaya, V. P. Bass, UDC 539.196.2+539.198
0. V., Petrov, and S. V. Tokovoi

The description of collisional processes in rarefied gases requires information about
the interaction potentials. Theoretical and experimental data have now been accumulated on
the short-range intermolecular forces. The status of this field is reviewed in [1-4]. The
chief results were obtained primarily from experiments on scattering of high-energy beams
(E ~ 1 keV) by small angles (8 ~ 1072 rad) or from measurements of the attenuation of beams
passing through a layer of scattering gas (gas target). Empirical values of the parameters
in power-law and exponential potentials for different atomic and molecular gases are col-
lected together in [1].

The region of moderate interaction energies (~10 eV) has been less studied, since the
question of producing monoenergetic neutral particle beams in the region 1-10 eV has yet
to be resolved. In the last few years, problems for which reliable information about the
interaction potentials in this energy range is required in order to obtain qualitative and
quantitative results have appeared. They include the questions of the formation of the char-
acteristic external atmosphere (CEA) around aircraft at high altitudes. One of the chief
mechanisms for transport of pollutants to the sensitive elements of the environment in the
formation of CEA are return flows, determined by collisions between the pollutant particles
and the particles of the incident flow.

In this case the problem reduces to summing the particle fluxes on the corresponding
surface element dS of the body in the flow [5] dN = n;n,dog,,dtdS, etc., where n, and n, are
the particle densities in the incident flow and the products of mass release from the struc-
tural surfaces (as a result of desorption, degassing, sublimation, evaporation, etc.) in the
volume element of the physical space dt, gy = |v.—Vvy] is the relative velocity of the colliding
particdles (the index 1 refers to the particles in the incident flow and the index 2 refers to
the mass-release particles); do is the differential cross section for scattering into the
solid angle dw, at which the element dS can be seen from the center of the volume dr.

In the case of elastic-sphere molecules the differential scattering cross section in
the coordinate system fixed to dS can be represented in the form

Dnepropetrovsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,
No. 4, pp. 28-32, July-August, 1988. Original article submitted May 5, 1987.

482 0021-8944/88/2904-0482$12.50 © 1989 Plenum Publishing Corporation



