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The thermal breakdown of solid dielectrics includes, in a simplified form, three stages: 
i) heating of the solid phase up to the temperature of the effective phase transition T,; 2) 
isothermal transition into a conducting gaseous phase; and 3) flow of the latter phase. As- 
suming the electric potential ~ of the conducting phase is constant, we can assume that the 
energy inflow owing to Joule dissipation occurs only in the first two stages. Assuming that 
the breakdown times are short, transport processes can be neglected. For simplicity we 
neglect free charges. We write Ohm:'s law in its simplest form: 

j = aE,: ( 1 )  

where  j i s  t h e  e l e c t r i c  c u r r e n t  d e n s i t y ;  E i s  t h e  i n t e n s i t y  o f  t h e  e l e c t r i c  f i e l d ;  and ,  a 
i s  t h e  c o n d u c t i v i t y .  C o n f i n i n g  o u r  a t t e n t i o n  t o  t h e  o n e - d i m e n s i o n a l  c a s e ,  we s h a l l  t a k e  i n t o  
a c c o u n t  t h e  s p a t i a l  a s y m m e t r y  o f  b r eakdown  on t h e  b a s i s  o f  a s p h e r i c a l  d e s c r i p t i o n .  The 
f o r e g o i n g  s i m p l i f i c a t i o n s  o f  t h e  p r o b l e m  w e r e  a d o p t e d  in  o r d e r  t o  s i m p l i f y  t h e  a n a l y s i s .  
The c h i e f  s i m p l i f i c a t i o n  i s  n e g l e c t i n g  t h e  t r a n s p o r t  p r o c e s s e s .  I t  i s  i n  t h i s  s e n s e  t h a t  
t h e  p r e s e n t  d e s c r i p t i o n  i s  a s y m p t o t i c .  The r e m a i n i n g  s i m p l i f i c a t i o n s  a r e  n o t  f u n d a m e n t a l  and 
can  be  r emoved  i f  n e c e s s a r y .  At t h e  end o f  t h i s  p a p e r ,  i n  p a r t i c u l a r ,  a p o s s i b l e  method  f o r  
t a k i n g  i n t o  a c c o u n t  t h e  d i s p l a c e m e n t  c u r r e n t  i s  b r i e f l y  d i s c u s s e d .  

Thus t h e  p r o b l e m  r e d u c e s  t o  a s y s t e m  c o n s i s t i n g  o f  t h e  e n e r g y  e q u a t i o n s  and t h e  p a r t i c u -  
l a r  M a x w e l l ' s  e q u a t i o n s ,  d e s c r i b i n g  t h e  f i r s t  two s t a g e s :  

0 
a~ (~u) = (iE) ---- ]E; ( 2 )  

i 0 a i r  j ~ ~ 7  (r2]) = O; (3 )  

air D = 7  (r~D) = O. (4 )  

H e r e  ~( i s  t h e  d e n s i t y ;  u i s  t h e  i n t e r n a l  e n e r g y ;  D = eE i s  t h e  e l e c t r i c  i n d u c t i o n  (~ i s  t h e  
d i e l e c t r i c  c o n s t a n t ) ;  t i s  t h e  t i m e ;  and  r i s  t h e  r a d i u s  (R 1 ~  r ~ . R ~ ) .  When t h e  t o t a l  c u r -  
r e n t  I ( t )  i s  g i v e n ,  Eq. ( 3 )  i s  e m p l o y e d ;  when t h e  e x t e r n a l  v o l t a g e  U ( t )  i s  g i v e n ,  (4 )  i s  
e m p l o y e d .  At  t h e  b o u n d a r i e s  o f  t h e  p h a s e s  e i t h e r  j [ a c c o r d i n g  t o  ( 3 ) ]  o r  D [ a c c o r d i n g  t o  
( 4 ) ]  i s  c o n t i n u o u s .  I n  a d d i t i o n ,  a s  u s u a l ,  i t  i s  a s sumed  t h a t  T and ~ a r e  c o n t i n u o u s .  

We s h a l l  f i r s t  s t u d y  t h e  s i m p l e s t  s i t u a t i o n  when I (t) i s  g i v e n .  The g e n e r a l  s o l u t i o n  
of (2), according to the integral of (3) 

2nr 2] = I(t), (5)  

has the form 
T 

ad(Tu) = P( t ' )d t ' -~  +/(r);  (6 )  
T o 

where the arbitrary function f(r) = 0, according to the initial condition T(r, 0) = T O . At 
the first stage u = c(T - T o ) (c is the heat capacity), and assuming for simplicity that 7, 
c = const, we obtain 

T t 

7c a(r ' )dT '  = (~)~ r-~, 
T o 
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so that the moment t o at which T(R I, t) reaches the value T, is determined from (7) with 
T,  to 

At times t > t o a front corresponding to the start of the phase transition, whose coor- 
dinate p1(t) is determined from (7) with r = Pl, 

T, t 

v fo(r')dr'= (8) 
To (2g) 2 P~ 

will pass into the dielectric. For /~x~r~pl a phase transition occurs, and the degree of 
completion of the transition ~(r,: t) (0 ~ ~ ~ i)is obtained from the equation 

v e ~ (I") d r '  + a ( l ' , )  ~.~ = ~ 12 (t') dt' r- i 

[X i s  t h e  h e a t  o f  t h e  p h a s e  t r a n s i t i o n  (u  = c ( T ,  - T  o ) + X $ ) ] .  The  t i m e  t~  o f  c o m p l e t i o n  o f  
t h e  p h a s e  t r a n s i t i o n  (~ = 1) a t  r = R 1 i s  d e t e r m i n e d  f r o m  ( 9 ) :  

"e o ( r ' )  e r '  + = (r)  e r  • 

For t > t I the front corresponding to the end of the phase transition, whose coordinate 
pi(t) is determined from (9) with r = P2 

i ] "r c .I a (r')  dr" + a ( r , )  7, = ~ f I ~- (t') dr' l (10) 
% . (z~) Jo P". 

will pass into the dielectric. Inside the region of the phase transition (P3 ~ r.~< Pl)we find 
~(r, t) as before from (9). The time t 2 at which the start of the phase transition reaches 

T, t z 

the outer surface of the dielectric is determined from (7) with r----R2:~c[ ~(T')dT'-- t ~ • 
r ~ (2~) ~ 

o 

I Finally, the time t~ at which the end of the phase transition reaches the outer 

surface of the dielectric - the total breakdown time - is obtained from (9) with r = Ri: 

? e a ( T ' ) d T ' + ~ ( T , ) L  = I~(t')dV-~- i .  I t  i s  e a s y  t o  s e e  t h a t  t h e  i n e q u a l i t y  t o < t a ,  2 < t a 
To H.2 

holds. 
T, 

The relation between t I and t 2 is determined by the quantities S(r(T')dT'/[cr(T,)%] and Ri/R I. 
T o 

Figure I shows for convenience the r--t diagram with the curves p1(t) and 02(t) for I = 
T, 

const, when t I - t 0 < t 3 - ti, and ~ ~(T')dT'/(~.%)<I , when t o < t I - t o . The numbers i-3 
T o 

refer to the conducting phase, the region of the phase transition, and the dielectric. 

We return now to the situation when U(t) is given. For simplicity we assume that g = 
const. The integrals (4) have the form 

E = gl (t)/er ~, r = gl (t)/er q- g~(t) (ii) 

( g : t , 2  are arbitrary functions). At the stage I 

E = u ~ (12) 
I l R  1 - -  I I R ~  r 2 

and the integral (2) 
T t 
C dr' 1 f 

r c j  ~ = ( t /nl  - 1/n2)2 ) U  2 (t ' )dt '- f i-+l (r). 
To 

(13) 
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t 
% 

t, 

to 
0 

"---"r | i  i pz - - -  - -  

% % ,, 

F i g .  1 

Here the arbitrary function f(r) = 0 because of the initial condition. The moment to at 
which T(Rz, t) reaches the value %.~ is determined from (13) with r = Rx: 

T ,  t o 

J ~-'[fS) = (ilB, - -  11B2)~ U s (t') dr' . 

For  t > t o t h e  c o o r d i n a t e  c o r r e s p o n d i n g  t o  t h e  s t a r t  o f  t h e  phase  t r a n s i t i o n  p l ( t )  i s  
found  f rom (13)  w i t h  r = 01: 

T ,  t" 

dr' = I_ , ~U s (t') dt" i .  (14) 
!o  -V5 Oml - " o 

For i~i~ . r~ Px a phase transition occurs; the degree of completion $(r, t) is obtained from 
the equation 

dT' ~ = t %, c U ~ ( t ' ) d t ' 5 .  (15) 

The moment t x a t  which  t h e  phase  t r a n s i t i o n  s t o p s  (5 = 1) i s  d e t e r m i n e d  f rom (15) w i t h  r : 

dr' X = l US 
RI:  %, c ~ -)----(-(-~,) ( t / B _ l l R s ) 2  ( t ' )dt '  . 

For t > t I a front corresponding to the end of the phase transition, whose coordinate 
p2(t) is found as follows, passes into the dielectric. We write the integrals (4) in the 
form 

E t _F~-Z~ (0 I ~ / 'dh l  (t) 
=--er s V T , ,  ~ = ~  v y + h~(t) (16) 

(h,,2 are arbitrary functions). Because the potential of the conducting phase is constant 
U(t) is applied to the gap ps(t) -}{2, i.e., 

~ (17) = V ~ .  

The i n t e g r a l  (2)  in  t h e  s t a g e  1 i s  
T 

dr' hA!  
~c o---~ ---- 82 r, + / (r),~ (18)  

T O 

is calculated from the condition that (18) be identical to where .the arbitrary function f(r) 
(13) at t = tl, so that 

[ T ?c dT' 4 

T O 

t SU 2 
(t/R1-- ~1R2)2 (t') dr' . (19) 

From (17) and (19) with r = Pl we obtain 
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-- P~-d7 ---- 

The integral (2) at the stage 2 

where the arbitrary function f(r) 
(15) at t = t I, so that 

[r 
hl (t) - h~ (tO + e 2 171c 

From (17) and (22) with r = P2 we find 

U 2 
T, 

?c [ dT'/a (T') 

L 

(2o)  

dT' ~, h l  t (21) 
c b - [ f S + '  (----~,)~ = ~ 7 + f ( r ) ,  

T o 

i s  d e t e r m i n e d  f r o m  t h e  c o n d i t i o n  t h a t  ( 2 1 )  b e  i d e n t i c a l  t o  

~ dT" t Uz + --~-f-~,)~ - ( t ' )dt '  . L r~t - - ( I /R1  1/R2)2 
T o 

v ~ 

] ? e dT'/~ (r ')  + %/~ (T,) 
T o 

From the system (20) and (23) we obtain the final integrals 

T, 
e j dr,/o (T') 

T, < l; 

c J dT'[~ (T') + Z/~ (T,) 
T O 

t 

:: ~ U s ( t ' )  dr' 

(t/3) B~ (6x 2 -  8x 3 + 3x ~) = T, 

' , [ .f  ] %, c _ dr'/(~ (r') + ~/~ (T,) 
T O 

[ (p2( t l ) - - - -Rt ,  x---- p 2 / R ~ < ~ l ,  and  x 1 = R1/R 2 < 1 ] .  
d e t e r m i n e d  f r o m  ( 2 5 )  w i t h  P2 = R:  ( x  = 1 ) :  

t t (R~ - B1) 3 (R= + 3 R 0  = 
3 R~ 

( 2 2 )  

(23) 

(24) 

(25)  

The time t s of breakdown of the dielectric is 

#3 
S U (t') dr' 

c ~ dr'/~ (r') + ~/c; (r,) 
T O 

Finally, we have the convenient expression 

T,  ] ~3 

which in the limit x + 1 transforms into the obvious result for the two-dimensional case, 
when the phase transition passes uniformly through the entire volume of the dielectric. 
Because of the inequality 3/(I + 2xi) > I it follows from (26) that the spatial asymmetry of 
the breakdown shortens its duration. 

Taking into account free charges leads to the appearance of a displacement current~ 
which is physically equivalent to relaxation of the electric field strength to its equilib- 
rium value. For a solid dielectric, because of the redistribution of the internal energy, 
the general equation for the energy neglecting transport processes in the one-dimensional 
spherical case has the form (analogous to [I]) 

?u+\~-f/vg ~ +7~[r }+ 4=ot/q) =0 (27) 
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which reduces to (2) with e = const. 

or 

0 (?u) = ]E + [or 80* at [ [~]v 87]S' (28) 

The equation of continuity of the total current [i] is 

~'o-7 r2 ]+~-~?-/- = 0 ,  (29) 

whose first integral is 

2~r 2 ] + ~ ]  (t). 

The sys tem (28) and (30) i s  c losed  by Ohm's law (1) and t h e  c o n d i t i o n  of  p o t e n t i a l i t y  
E = - - O ~ / O r .  I n t e g r a t i o n  of  t h i s  system i s  compl ica ted  by t h e  f a c t  t h a t  e and c depend on T 
( f o r  a s o l i d  i t  may be assumed t h a t  7 = c o n s t ) .  Equat ion  (27) d i f f e r s  from t h e  analogous 
r e l a t i o n  in [1] by a r e d e f i n i t i o n  of  t he  i n t e r n a l  energy and P o y n t i n g ' s  v e c t o r .  

I. 
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The description of collisional processes in rarefied gases requires information about 
the interaction potentials. Theoretical and experimental data have now been accumulated on 
the short-range intermolecular forces. The status of this field is reviewed in [1-4]. The 
chief results were obtained primarily from experiments on scattering of high-energy beams 
(E ~ i keV) by small angles (8 ~ 10 -2 rad) or from measurements of the attenuation of beams 
passing through a layer of scattering gas (gas target). Empirical values of the parameters 
in power-law and exponential potentials for different atomic and molecular gases are col- 
lected together in [i]. 

The region of moderate interaction energies (~i0 eV) has been less studied, since the 
question of producing monoenergetic neutral particle beams in the region i-i0 eu has yet 
to be resolved. In the last few years, problems for which reliable information about the 
interaction potentials in this energy range is required in order to obtain qualitative and 
quantitative results have appeared. They include the questions of the formation of the char- 
acteristic external atmosphere (CEA) around aircraft at high altitudes. One of the chief 
mechanisms for transport of pollutants to the sensitive elements of the environment in the 
formation of CEA are return flows, determined by collisions between the pollutant particles 
and the particles of the incident flow. 

In this case the problem reduces to summing the particle fluxes on the corresponding 
surface element dS of the body in the flow [5] dN = nmn2dcg=idxdS, etc., where n I and n 2 are 
the particle densities in the incident flow and the products of mass release from the struc- 
tural surfaces (as a result of desorption, degassing, sublimation, evaporation, etc.) in the 
volume element of the physical space dx, g~, = [v~--vll is the relative velocity of the colliding 
partidles (the index I refers to the particles in the incident flow and the index 2 refers to 
the mass-release particles); dc is the differential cross section for scattering into the 
solid angle d~, at which the element dS can be seen from the center of the volume dx. 

In the case of elastic-sphere molecules the differential scattering cross section in 
the coordinate system fixed to dS can be represented in the form 
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